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Abstract

The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a

simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear

layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics

simulations demonstrate the nonlinear interaction and competition between a centrifugal instability

and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under

axisymmetric flow conditions, it is found that the swirl leads to the emergence of connterrotating

vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws

are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong

decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear

evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric

perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating

vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by

wavy streamwise vortices alone.
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1 Introduction

Swirling jets represent one of a handful of paradigm flows that, while of great practical significance,

allow for the fundamental study of complex but generic dynamical processes and their interactions.

They feature prominently in a variety of applications in such fields as propulsion, combustion,

and mixing. At the same time, atmospheric conditions can give rise to swirling flows in nature,

with both wake and jet-like axial velocity profiles. Examples concern tornados, dust devils and

water spouts. All of the above situations are characterized by a complex interplay of a variety

of competing dynamical mechanisms. The axial velocity profiles typically allow for shear induced

instabilities similar to those encountered in nonswirling flows. However, the additional presence of

swirl can result in an unstable radial stratification, thereby leading to centrifugal instabilities as weLl.

Furthermore, the swirl can give rise to standing or propagating nonlinear inertial waves, similar to

the internal waves observed in flows with density stratification. Finally, under certain conditions

swirling jets are known to produce vortex breakdown events, an important generic phenomenon

for which a universally accepted explanation is still elusive. An improved understanding of these

mechanisms and their mutual coupling is a prerequisite for the successful development of active

and passive control strategies employing sound, nozzle geometry and motion, or micromachines,

with the goal of tailoring the flow such as to generate the desired operating conditions.

An introduction into the basic physics of swirling flows is given by Gupta et al. 1, while some

more advanced aspects pertaining mostly to confined flows are reviewed by Escudier. 2 Early an-

alytical investigations were mostly directed at finding similarity solutions to simplified equations

and boundary conditions, 3 and at determining the linear stability of various combinations of axial

velocity profiles and swirl. 4'5'6'7's Experimental investigations of swirling jets for the most part have

addressed the issue of mean flow profiles and averaged turbulent transport properties. 9,1°,11'12 Only

recently have researchers begun to pay attention to the dominant role played by the underlying
vortical flow structures and their dynamical evolution, e.g. Panda and McLaughlin. 13 These au-

thors point out the crucial role played by axisymmetric and helical instability waves, emphasizing

the importance of a structure-based understanding of the flow dynamics.

To our knowledge, no axisymmetric or three-dimensional nonlinear computations aimed at

elucidating the fundamental dynamics of swirling jets are reported in the literature. However, the

recent axisymmetric computational results obtained by Lopez, 14 Brown and Lopez, 15 and Lopez

and Perry 16 for an internal swirling flow, and by Krause and colleagues for the vortex breakdown

phenomenon (reviewed by Althaus et al. lr) suggest that such computations can provide some

fundamental insight into the flow physics of swirling jets.

For the purpose of studying the nonlinear dynamical interaction of shear and centrifugal insta-

bilities in swirling jets, we recently introduced a simplified model 18 that is an extension to earlier

ones proposed by Batchelor and Gill, 19 Rotunno, 2° and Caflisch, Li and Shelley. _1 It lends itself

well to analytical linear stability calculations, as well as to nonlinear Lagrangian vortex dynamics
simulations. The model consists of an axial centerline vortex, which is surrounded by a nominally

axisymmetric vortex sheet containing both streamwise and circumferential vorticity. While this

model has obvious limitations when it comes to reproducing the detailed features of experimentally

generated, and often geometry dependent velocity profiles, its simplicity offers several advantages.

First of all, it aLlows for some analytical progress is in terms of a straightforward linear stability

analysis, which illuminates the competition of centrifugal and Kelvin-Helmholtz instability waves.

In particular, the results show that centrifugally stable flows can become destabilized by sufficiently

short Kelvin-Helmholtz waves. Secondly, the model enables us to study the nonlinear interaction

and competition of the various instability mechanisms involved, by means of fully nonlinear nu-
merical calculations.



Somepreliminarynonlinearsimulationsfor axisymmetricperturbationswerereportedby Mar-
tin and Meiburg,22who showedthat, undercertaincircumstances,counterrotating vortex rings

emerge in the braid regions between the primary vortex rings generated by the Kelvin-Helmholtz

instability of the axisymmetric shear layer. These counterrotating vortex rings can trigger a dra-

matic decrease in the local jet diameter. A further interesting observation shows the circulation of

the swirling vortex rings to be time-dependent, in contrast to the vortex rings found in nonswirling

jets. The dynamics of these swirling vortex rings represents an interesting research area in its own

right. While nonswirling rings have been the subject of considerable theoretical, experimental,

and computational research (Shariff and Leonard, 23 and references therein), much less is known

about vortex rings with swirl, in part because of the considerable difficulties one encounters when

trying to generate them experimentally. On the other hand, several recent theoretical investiga-

tions addressing the form and stability of isolated swirling vortex rings 24,25'26'27 can be expected to

stimulate further efforts in this direction.

After a brief discussion of the flow model in section 2, we will investigate the nonlinear ax-

isymmetric evolution of the above swirling jet model in more detail in section 3. In particular, the

formation of recircnlation regions will be analyzed in detail, and scaling laws for the time-dependent

growth of the vortex ring circulations will be derived. In section 4, we will extend the numerical

investigation to fully three-dimensionally evolving swirling jets, by imposing azimuthal perturba-
tions in addition to the axisymmetric ones. The azimuthal perturbations can trigger additional

instabilities of the rings or the braid regions. The simulations to be discussed will then allow us to

investigate the nonlinear interplay of the competing instabilities for various values of the governing

dimensionless parameters.

2 Flow Model and Numerical Technique

The present flow model of an axial line vortex surrounded by a nominally axisymmetric cylindrical

shear layer containing streamwise and circumferential vorticity represents an extension of earlier

ones investigated by several researchers, dating back to the analyses by Batchelor and Gill 19 as

well as Rotunno 2° of the stability of an axisymmetric layer of circular or helical vortex lines. More

recently, Caflisch, Li and Shelley 21 introduced the effect of swirl by placing the additional line

vortex at the center of the axisymmetric layer. However, their unperturbed vortex sheet had an

axial vorticity component only, so that a jet-like velocity component was absent. In the present

investigation, we employ a slightly more complicated model (Fig. 1), consisting of a line vortex of

strength Fc at radius r=0, surrounded by a cylindrical vortex sheet at r = R. The unperturbed

axisymmetric vortex sheet contains both azimuthal vorticity (corresponding to a jump AUz in the

axial velocity) and streamwise vorticity (representing a jump AUe in the circumferential velocity).

The strength of the vortex sheet is taken to be equal and opposite to that of the line vortex. The
vortex lines in the sheet hence are of helical shape, with their pitch angle _p being

¢ = tan -1 ] (1)

These particular features of our model were chosen on the basis of the following considerations.

While an axisymmetric cylindrical layer of circular vortex lines represents a unidirectional flow with

a top hat like profile shape, helical vortex lines result in an additional azimuthal velocity component,

which jumps at the location of the vortex layer. If there is no streamwise circulation present at

radii smaller than that of the cylindrical layer, this azimuthal velocity component vanishes inside

the cylinder and exhibits a 1/r-dependence on the outside. Consequently, since the magnitude of



the circulationincreasesacrossthe vortical layer, this flow is centrifugallystableon the basisof
Rayleigh'scirculationtheorem. However,if somestreamwisecirculationis containedinside the
cylinder,andif this circulationis of oppositesignto thestreamwisecirculationof the layeritself,
then the magnitudeof the circulationcandecreaseacrossthe vortical layer, so that weobtain
a centrifugallyunstableflow. The line vortex at the centerof the jet is introducedexactly for
this purpose.Its strengthis takento beequalandoppositeto that of thestreamwisecirculation
containedin the vortical layer,in orderthat the azimuthalvelocitycomponentof the baseflow
vanishesoutsidethejet. In this way,oursimplifiedmodelmimicksa swirlingjet enteringfluid at
rest. Thefluid velocityprofileassociatedwith our modelis sketchedin Fig. 1aswell.

Byintroducingbothaxialandazimuthalvorticity alongwith thecentrallinevortex,this model
allowsfor the investigationof competingKelvin-Helmholtzandcentrifugalinstabilities,whichcan
be expectedto leadto interestingnonlineardynamicalbehavior.For the nonswirlingtop hat jet
velocityprofileit is knownthat axisymmetricandhelicalperturbationswill resultin theformation
of vortexrings or helices,respectively,all of the samesign.2s'29For purely swirlingflow, on the
other hand,Caflischet al.21 demonstrated that axisymmetric perturbations lead to the emergence

of counterrotating vortex rings. By superimposing a top hat streamwise velocity profile upon the

purely swirling flow, we hence expect a breaking of the symmetry exhibited by the purely swirling

flow alone. Conversely, introducing swirl into the nonswirling jet flow should lead to a tendency

to form azimuthal vorticity of a sign opposite to that of the vortex rings which evolve as a result

of the pure Kelvin-Helmholtz instability. Additional azimuthal disturbances will render the flow

field fully three-dimensional. Both the swirling vortex rings as well as the braid regions connecting

them may develop instabilities that can lead to the formation of concentrated streamwise vorticity.

In order to compute the nonlinear evolution of the flow in response to certain imposed per-

turbations, we employ a vortex filament technique that is essentially identical to the one used in

earlier investigations of plane shear layers, wakes, and jets. 22'28'29'3°'31'32 It is based on the theorems

of Kelvin and Helmholtz and follows the general concepts reviewed by Leonard 33 and Meiburg. 34

A detailed account of the technique is provided in these earlier references.

For the numerical simulations of the simple jet model, we limit ourselves to the temporally

growing problem, in spite of the spatial growth exhibited by a typical experimental flow field. We

face a trade-off here, as the spatially growing simulation would require that we extend the control

domain over several streamwise wavelengths, so that the numerical resolution per streamwise wave-

length would necessarily suffer. In addition, the streamwise boundary conditions pose a much more

severe problem in spatially growing flows. In the present investigation we opt for the temporally

growing approach. Previous experience concerning the simulation of nonswirling and swirling jets

justifies this approach, as it demonstrates that centrifugal and shear instabilities represent the dom-

inant mechanisms in the evolution of the jet. These mechanisms are captured by the temporally

growing flow, so that we can expect to gain significant insight into the dynamical evolution of these

flows on the basis of the temporal growth approach. Under this assumption, we can concentrate

the numerical resolution on one streamwise wavelength, which allows us to take the calculation

farther in time.

The wavelength in the axial direction, i.e., the length of the control volume, is based on

Michalke and Hermann's 3s stability analysis for the spatially evolving nonswirling jet. By using

Gaster's 36 transformation, we obtain the wavelength of maximum growth for the temporally evolv-

ing flow as approximately 27r. One cannot necessarily expect the linearly most unstable wavelength

to dominate the nonlinear regime as well. However, as our interest lies in simulating the evolution

of a slightly perturbed flow from the linear regime all the way into the nonlinear one, starting

with the linearly most unstable wavelength represents the obvious approach. Whether or not this

wavelength continues to dominate the nonlinear regime, or if it changes due to pairing or other

3



nonlinearinteractionmechanisms,can only be determined by extending the simulation farther into

the nonlinear regime, under explicitly imposed perturbations or random roundoff errors. We do

not investigate this issue in the present study.

One streamwise wavelength is typically discretized into 105 filaments. Each filament initially

contains 123 segments in the circumferential direction. These numbers emerged from test calcula-
tions, in which we refined the discretization until a further increase in resolution resulted in very

small changes. The Biot-Savart integration is carried out with second order accuracy both in space

and in time by employing the predictor-corrector time-stepping scheme, in conjunction with the

trapezoidal rule for the spatial integration. As the flow structure develops nonlinearly, the vortex

filaments undergo considerable stretching. To maintain an adequate resolution, the cubic spline

representation of the filaments is used to introduce additional nodes, based on a criterion involving
distance and curvature. 3° Furthermore, the time-step is repeatedly reduced as local acceleration

effects increase. The filament core radius a decreases as its arclength increases, to conserve its

total volume. In order to assess the accuracy and convergence of the vortex filament simulations,

we presented in Martin and Meiburg _s a comparison of the numerical and analytical growth rates

for the axial Kelvin-Helmholtz instability of the nonswirlingjet. This comparison showed that the

simulation overpredicts the growth rate, which is due to the fact that the filaments do not deform

from a circular cross section under strain. In Figure 2, a comparison is shown for the growth rates

of a purely swirling flow. It can be seen that the numerical growth rate reproduces the exact one

to a high degree of accuracy.
We take the streamwise velocity difference between the centerline and infinity as the charac-

teristic velocity. The thickness of the axisymmetric shear layer serves as the characteristic length

scale, which results in the filament core radius a = 0.5. The nominal jet radius R is taken to be

5, and we obtain the ratio of jet radius R and momentum thickness 0 of the jet shear layer as

R/O = 22.6. Hence, the ratio R/a _ 1, and we are well within the range of validity of the filament
model.

3 Results

3.1 Axisymmetric Case

As a first step, we discuss the nonlinear evolution of a strictly axisymmetric configuration, for which

some preliminary results were reported by Martin and Meiburg. 22 The swirling jet is centrifugally

unstable under Rayleigh's circulation theorem, allowing us to investigate the competition between

the Kelvin-Helmholtz instability of the azimuthal vorticity component and the centrifugal instability

feeding on the streamwise vorticity.
The initial axisymmetric perturbation displaces the vortex filament centerlines in the radial

direction, with an amplitude, el, of five per cent of the nominal jet radius. A filament's perturbed

radius r _ is then determined by the equation

r' = r(1 - eI sin (2_rx/A)) (2)

in which A is the streamwise wavelength, and r is the distance of the filament centerline from the

jet axis. A typical development of the flow field is shown in Figure 3 for the relatively large velocity

ratio of AUe/AU_: - 8.2. This parameter value indicates that the jump in the azimuthal velocity

component across the jet shear layer is much larger than that of the axial component, so that,

for the unperturbed flow, the vortex lines are predominantly oriented in the streamwise direction.

Figure 3a (time=0.039) shows a side view, i.e., those filament sections located at y > 0, of an early

configuration of the vortex filaments, along with contours of the azimuthal vorticity component (Fig.



3b). For clarity, twostreamwisewavelengthsareshown.Bothgraphsindicatethat the azimuthal
vorticity componentpointsin thesamedirectioneverywherein thevortexsheet,in afashionsimilar
to the axisymmetricKelvin-Helmholtzinstability of nonswirlingjets. Thecontourplot reflectsthe
early stagesof ring formationdue to the Kelvin-Helmholtzinstability of the azimuthalvorticity
component.By time 0.801(Fig. 4a), on the other hand, a newphenomenoncan beobserved,
namelythe reorientationof certainvortexfilamentsegmentsin the oppositeazimuthaldirection.
Near x = _r and x = 3_-, the rings that were already emerging at t = 0.039 continue to grow.

Their vorticity is of the same sign as that in a corresponding nonswir]_ing jet. At x = 0 and

x = 27r, however, the vortex filaments reverse their direction, which causes them to form regions of

azimuthal vorticity of opposite sign. This reflects the influence of the centrifugal Rayleigh instability

and its tendency to generate pairs of counterrotating vortex rings, as seen in the vorticity contours

at t = 0.801 (Fig. 4b). The explanation lies in the fact that the swirl generates a strong radial

gradient of the azimuthal velocity component. As a result, the azimuthal velocity component of a

vortex line varies strongly along its arclength. Thus, there are segments of a vortex line that travel

around the jet's axis at a higher angular velocity than neighboring segments of the same vortex line.

Since the overall dynamics is inviscid, the vortex line has to stay connected, so that it necessarily

has to fold back and forth, thereby generating azimuthal vorticity components of both signs. With

increasing time, the emerging counterrotating ring becomes stronger (Fig. 5, t = 1.225), until two

distinct counterrotating rings of opposite sign have emerged.

It should be pointed out that the circulation of each of the counterrotating rings, i.e., the

integral over the positive (negative) azimuthal vorticity within one streamwise wavelength in the

cross-cut, is a function of time, as the vortex filaments continue to wrap around the jet axis due

to the differential azimuthal velocities experienced by different segments of the same vortex line.

However, the sum of the circulations of two neighboring vortex rings of opposite sign remains

constant with time. It is equal to the integral over one streamwise wavelength of the unperturbed

initial azimuthal vorticity. In other words, while the circulations of the individual vortex rings grow

indefinitely as a function of time, the sum of the circulation of a pair of counterrotating vortices

does not depend on time. This is in contrast to the nonswirling configuration, where the circulation

of individual vortex rings is independent of time.

In order to identify the formation, location, and size of any recirculation regions, it is of

interest to analyze the bifurcation sequence of the streamline pattern, as seen in a reference frame

moving with the velocity of the evolving jet shear layer structures, i.e., half the velocity of the

unperturbed jet (Fig. 6). After the initial perturbation has been imposed, the streamlines show
the familiar shape of the well-known Kelvin cats eyes (t = 0.039, Fig. 6a). With the emergence of

counterrotating azimuthal vorticity, this topology changes, and an "island" forms midway between

the Kelvin-Helmholtz vortices (t = 0.625, Fig. 6b). This island grows with time (t = 1.016, Fig.

6c), until it extends all the way to the jet centerline. Subsequently, a finite region of upstream

velocity on the jet axis forms (t = 1.436, Fig. 6d), indicating the existence of a closed recirculation

bubble. The different streamline pattern topologies are sketched in Figure 7.

The time-dependent evolution of the streamline pattern described above aids in the under-

standing of the transport of fluid towards and away from the jet axis. Between the counterrotating

vortex rings, alternating regions exist in which the fluid velocity is directed towards larger and

smaller radii, respectively. In this way, a certain 'pinch-off' effect is created, i.e., locally the jet

diameter decreases dramatically.

Figure 8 shows the instantaneous growth rate of the circulation of the counterrotating vortex

ring as a function of time, for different values of the dimensionless ratio AUo/AUx. Increased values

of this parameter result in more rapid circulation growth, due to the increased role of the centrifugal

instability. The figure demonstrates that, as a result of the inviscid nature of the present vortex



dynamicscalculations,the vortexring circulationdoesnot saturate.
The waysin whichthe Kelvin-Helmholtzinstability interactswith the centrifugalinstability,

andhowthat interactionaffectsthestrengtheningof thecounterrotatingvortexring, is illuminated
by thefollowingscalingargument.Theazimuthalvelocityof a jet shearlayer vortexline segment
canbeapproximatedbythe azimuthalvelocityinducedat its locationbythe centerlinevortex,and
by the streamwisevorticity containedin the layeritself. In this way,weobtain for the azimuthal
velocityVOl of the widest shear layer cross section, located at radius R1 (Fig. 9)

Fc
vel _ -- (3)

4rR1

where Fc is the circulation of the centerline vortex. A corresponding expression follows for the

azimuthal velocity re2 of the narrowest shear layer cross section, located at radius R2. The above

shows that different segments of the jet shear layer will rotate around the jet axis at different

rotation rates. However, if a segment of the jet shear layer rotates at a different rate from a

neighboring segment, the shear layer vorticity becomes increasingly reoriented into the azimuthal

direction, thereby forming a vortex ring. The strength of this evolving vortex ring depends on

the accumulated difference in the rotation between the neighboring segments. In particular, if one

segment of a vortex line has rotated around the jet axis one more time than a nearby segment, a

vortex ring has formed that has the circulation of the entire jet shear layer. Since this strength of

the jet shear layer is equal and opposite to that of the centerline vortex, we have

27rRoAUe = -Fc (4)

It follows immediately that the strength of the primary vortex ring, F2, increases at the same rate

as that of the secondary, counterrotating vortex, F1, namely by the amount I F_ ] during the time

interval AT that it takes for the narrowest cross section to complete one more rotation than the

widest cross section. We obtain

dlrl[ dlr2J Fc- -- (5)
dt dt AT

With the above estimates for the azimuthal velocities of the cross sections, we then get the following

estimates for the rate at which the circulation of the vortices increases

d lrll r_ R_-R_
dt -= 8r2" 2 2 (6)R 1R_

The temporal evolution of R1 and R2, in turn, depends on the growth of both the Kelvin-Helmholtz

and the centrifugal instabilities. This point clearly demonstrates the nonlinear interaction between

the two instability modes. The above scaling law relationship is shown in Figure 8, along with

the computational results. For short times, the counterrotating ring has not yet formed, so that

the above arguments do not yet apply. For long times, however, the agreement is quite good,

considering the rough estimates on which the scaling law is based. It should be mentioned that, in
the absence of viscous effects, the circulation of the counterrotating rings will grow without bounds,

as a result of the continued interaction of the shear and centrifugal instabilities.

3.2 The Effect of Azimuthal Perturbations

The axisymmetric nature of the above calculation permits the evolution of concentrated vortical

structures only in ring-like form. However, it is well known that three-dimensional perturbations

to nominally two-dimensional 3°'31'37'3s or axisymmetric 2s'29 shear flows give rise to concentrated



streamwisevortical structuresthat arepredominantlylocatedin the braid region. In order to
investigatepossiblemechanismsfor the generationof suchstructuresin swirlingjets, we intro-
ducean azimuthalperturbationin addition to the axisymmetriconedescribedabove. Just like
the axisymmetricperturbation,the azimuthaldisturbancedisplacesthe vortexfilamentcenterhne
radially from its nominallocation.Beforethe axisymmetricperturbationis apphed,the distancer

of a filament centerline is specified as a function of the circumferential coordinate ¢ by

r = R (1 + e2cos (5¢)) (7)

in which e_ is the azimuthal disturbance amplitude. In an experiment, this type of perturbation

can be imposed, for example, by means of a corrugated nozzle. 39 Due to the nonlinearity of the

overall problem, the initial perturbation amplitude ratio represents an important parameter of the

problem, as it can favor the rapid growth of one instability over others in their mutual competition.

In particular, the early growth of one instability can affect the base flow in such a way as to

suppress or accelerate the development of others. It should be pointed out that for this fully three-

dimensional case, a Kelvin-Helmholtz instability of the streamwise vorticity can develop, in addition

to the Kelvin-Helmholtz instability of the azimuthal vorticity and the centrifugal instability of the

streamwise vorticity.

In the first one of the fully three-dimensionai simulations, the ratio of the azimuthal and axial

velocity jumps across the jet shear layer has the same value AUe/AU_: = 8.2 as in the previous

axisymmetric calculation. The azimuthal disturbance amplitude is relatively small at e_ = 0.04%,

while the axisymmetric perturbation amplitude el is held constant at the level of five per cent (the

same as above). The wavenumber of the azimuthal perturbation is taken to be five. As can be seen

from Figure 10, the flow again develops two counterrotating vortex rings, as it did for the purely

axisymmetric case. However, already the side view at t = 0.977 shows a slight nonuniformity in the

azimuthal direction. By t = 1.187, concentrated streamwise braid structures have begun to form,

as a result of a Kelvin-Helmholtz instability of the streamwise braid vorticity. It is interesting to

note that these braid vortices form only in the braid section upstream of the primary rings, i.e.,

in the narrow part of the braid. In contrast, the widening half of the braid region downstream

of the primary rings does not exhibit any signs of concentrated streamwise vortical structures.

The explanation for this behavior can be found in the effective wavelength change of the azimuthal

Kelvin-Helmholtz instability due to the radial velocity component. In those regions where the braid

circumference grows, the growth of the Kelvin-Helmholtz instability in the circumferential direction

is slowed down as its effective wavelength increases, whereas in the narrowing braid sections the

instability is accelerated due to the wavelength reduction.

It is important to point out that the streamwise vortex structures are all of the same sign, i.e.,

they are corotating. The reason for this lies in the fact that the braid vorticity, which forms the

streamwise structures by a process of concentration as a result of a Kelvin-Helmholtz instability, is

of the same sign everywhere. In this aspect, the evolution of the braid region resembles the situation

encountered in a nonswirling jet disturbed by a helical and an azimuthal wave. 29 In contrast to the

counterrotating vortex rings, the circulation of the streamwise braid vortices cannot grow without

bounds. Rather, it is limited by the fact that, within a x = const, cross section of the jet, the

circulation of the jet shear layer vorticity has to be equal and opposite to that of the centerline

vortex. Consequently, the maximum strength of the streamwise braid vortices, achieved if all the

jet shear layer vorticity is contained in these concentrated structures, is equal to the circulation of

the centerline vortex divided by the azimuthal wavenumber.

The above observations are confirmed by the isosurface plot of the vorticity magnitude in

Figure 11 for t = 1.343. It shows the counterrotating vortex rings, connected in one half of the



braid regionby concentratedstreamwisevorticalstructures.A tendencyof the braid vorticesto
wrap aroundthe vortexringsis visibleaswell.

Figure12showstheevolutionof a flowif the azimuthalperturbationamplitudeis increasedto
e2 = 1%, while the axisymmetric disturbance amplitude is left unchanged at el = 5%. This increase

in the perturbation amplitude ratio is expected to lead to an increased growth of the azimuthal
Kelvin-Helmholtz instability, and consequently to a more rapid evolution of concentrated stream-

wise vortical structures. In addition, the ratio of the azimuthal and axial velocity jumps across the

jet shear layer is reduced to AUe//kU:_ = 3.0. In this way, the development of the centrifugal insta-

bility, and with it the formation of the counterrotating ring, is slowed down. As a result, at time

2.402 we recognize concentrated primary vortex rings, connected by strong streamwise braid vor-

tices that now extend over the entire length of the braid region. This early formation of streamwise

vortices has preempted any coherent directional reversal of the vortex filament portions, so that

counterrotating vortex rings have not formed in this flow. However, the centrifugal instability still

causes the braid vortices themselves to acquire a strong azimuthal component, thereby generating a

staggered pattern, as can be seen at t = 3.154. This is confirmed by the three-dimensional isosurface

plot, which shows primary vortex rings connected by strong wavy streamwise braid vortices.

This evolution of the flow for e2 = 0.01 is a typical result of the above mentioned competition

between the various instability mechanisms. Under these conditions, the growth of the Kelvin-

Helmholtz instability of the streamwise vorticity is accelerated compared to that of the centrifugal

instability, so that nearly all of the braid vorticity between the primary vortex rings becomes

concentrated in streamwise vortices before counterrotating rings can form.

Fig. 13 shows results for ,_Ue/AU, = 3.0 and e_ = 0.05, i.e., for an even higher azimuthal

perturbation amplitude. As a result, the growth of the Kelvin-Helmholtz instability in the azimuthal

direction is further amplified, so that now even the primary vortex rings develop only very weakly.

Already at t = 1.543, strong and slightly wavy streamwise vortices have formed, and a weak

tendency towards the formation of the primary rings is visible. At t = 3.105 we recognize that

the wavy sections of the streamwise structures align themselves in such a way that, together, they

nearly form a ring-like structure at the locations where primary rings should develop, although

they remain disconnected. Consequently, the three-dimensional isosurface plot shows that for the

present flow parameters the swirling jet is dominated by wavy streamwise structures, while neither

primary nor secondary counterrotating vortex rings seem to play an important role.

In the literature on swirling flows, it is common to quantify the effect of swirl in terms of a

swirl number S (e.g., Panda and McLaughlin13), and to then characterize the behavior of the flow

as a function of this parameter. The usual definition of S is

Ge
]0Go= 2". pvw,.2e,. = 2. (pv + p),-d,. (s)

S- Rd_ '

which gives the ratio of the axial flux of tangential momentum (_o to the product of the radius

R and the axial flux of axial momentum (_. For a vanishing jet shear layer thickness, the above

integration over our unperturbed initial velocity profile can be carried out analytically. However,

the result depends on the selected reference frame. When compared to the experimental situation

of a swirling jet entering a large body of fluid at rest, the proper computational reference frame is

the one in which the jet fluid has unit velocity in the streamwise direction, with the fluid outside

the jet being at rest. We then obtain

Fc
s - (9)

2.. R
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However,it is clearfrom the abovethat this definitionof theswirl numberis not verymeaningful
in characterizingthe effectof swirl in thepresentflowmodel,becauseit doesnot takeinto account
the presenceof streamwisevorticity in the axisymmetricshearlayer, which is the causefor the
centrifugalinstability. Consequently,the usualdefinitionof the swirl numbercannotbeemployed
in a meaningfulwayto distinguishdifferentflow regimesfor thepresentflowmodel.

4 Summary and Conclusions

The dynamical evolution of swirling jets is characterized by the complex nonlinear interaction of

several different competing instability mechanisms. The axial, jet-like velocity profile gives rise to a

Kelvin-Helmholtz instability of the azimuthal vorticity component, thereby favoring the formation

of like-signed vortex rings, as is well known from investigations of nonswirling jets. However,

the additional azimuthal velocity component of the base flow introduces streamwise vorticity as

well, whose existence allows for further instabilities to develop. Firstly, there is the possibility for a

centrifugal instability to arise, which tends to promote the evolution of counterrotating vortex rings;

i.e., rings of both the same as well as of opposite sign compared to those found in nonswirling jets.

Secondly, if the streamwise vorticity is mainly concentrated in a narrow shear layer surrounding the

jet axis. it can also be subject to a Kelvin-Helmholtz instability in the azimuthal direction, which
can lead to the evolution of concentrated streamwise vortices.

In order to gain some insight into the nonlinear mechanisms of interaction and competition

between these various potential instabilities, we performed nonlinear, inviscid, three-dimensional

vortex dynamics simulations for a simplified model of swirling jets. The nature of the model is

such that it allows for the easy identification of the various mechanisms at work. By tracking

the nonlinear evolution of vortex lines, it enables us to investigate the effects of the centrifugal

instability, as well as of the Kelvin-Helmholtz instabilities feeding on both the azimuthal and the

streamwise vorticity, onto processes of concentration, re0rientation, and stretching of vorticity. The

drawback of the present model is that it does not have easily adjustable parameters allowing for

the representation of the wide variety of experimentally generated, and often geometry dependent,

base flow profiles. In particular, a study of the dynamics of very smooth, Gaussian-llke streamwise

and azimuthal velocity profiles will have to be based on the evolution of a more continuous initial

vorticity distribution, rather than the shear layer model employed here. With this in mind, the

current investigation has to be seen as a first step, intended to provide qualitative information on

a variety of dynamical mechanisms and their interactions, and to be followed by three-dimensional

Navier-Stokes or vortex particle simulations. Nevertheless, the present model elucidates many of

the key features expected to dominate the evolution of swirling jets. In particular the formation

of counterrotating vortex rings, whose strength increases with time as a result of the continued

interaction between shear and centrifugal instabilities, seems to represent a general phenomenon

that one would expect to observe in a viscous flow as well. The quantitative growth, however, and

in particular the exact form of the scaling law given by eqn. (7) would certainly be a function

of the prescribed initial streamwise and azimuthal velocity profiles. In the same way, the exact

perturbation amplitudes resulting in more or less dominant streamwise vortical structures will vary

with these profiles as well. Even for more general velocity profiles we do expect, however, to

observe different flow regimes dominated by different large scale vortical structures, along the lines

described above.

A main goal lies in the investigation of the mechanisms by which the introduction of swirl

affects the dynamics observed earlier for nonswirling jets. 2s'29 Conversely, the question arises as to

how the purely swirling flow examined by Caflisch, Li, and Shelley 21 is modified by the addition



of an axialvelocitycomponent.Wefind that the maineffectof theaddedstreamwisevelocitylies
in the breakingof the symmetryof the pure swirlingflow. As a result, the counterrotatingrings
observedin thepurelyswirlingflowarenolongerof equalstrength,asoneof themisamplified,and
theotheroneweakened,by the Kelvin-Helmholtzinstabilityof the axial flow. On theotherhand,
the introductionof swirl drasticallyalters the dynamicsof nonswirlingjets, as it resultsin the
formationof counterrotatingvortexrings,whosecirculations,in the absenceof viscouseffects,can
grow in time without bounds.Theserings promotea pinch-offmechanismleadingto a dramatic
decreasein the localjet diameter.

While the abovemechanismscanbe observedin axisymmetricswirling jets, an additional
azimuthalperturbationleadsto the formationof concentratedstreamwisevorticesasa result of
a Kelvin-Helmholtzinstability feedingon the streamwisejet shearlayer vorticity. In contrast to
nonswirlingjets, the streamwisevorticesin swirlingjets areall of the samesign. The natureof
the largescalevortical structuresdominatingthelong termdynamicsof the jet dependsstrongly
on the ratio of the initial perturbationamplitudesin the azimuthaland streamwisedirections.
If this ratio is small, the centrifugalinstability hasenoughtime to form counterrotatingvortex
rings,beforeconcentratedstreamwisevorticescanemergein the braid regions between them. For

a somewhat larger perturbation amplitude ratio, streamwise vortices grow more rapidly in the

braid region between the like-signed primary vortex rings. In this way, they suppress the growth

of the counterrotating rings. However, the centrifugal effects lead to a partial reorientation of the

braid vortices in the azimuthal direction. Finally, for even larger initial azimuthal perturbation

amplitudes, the streamwise vortices grow fast enough to suppress the growth of even the primary

corotating vortex rings. In this case, the long term dynamics of the swirling jet is dominated by

wavy like-signed axial vortical structures.

The above description is predominantly qualitative, and a more detailed quantitative investiga-

tion of these effects is clearly necessary. In particular, it will be of interest to study the competition

between the different instability mechanisms as a function of the detailed shape of the base flow

profile. Furthermore, the effect of helical rather than azdsymmetric perturbations, and their inter-

action with azimuthal disturbances, needs to be addressed. Eventually, investigations of simplified

swirling jet models such as the present one are expected to provide some guidance for carrying out

and interpreting three-dimensional spatially growing, fully viscous simulations of swirling jets. It

is hoped that an investigation along those lines might also help to shed some light onto the various

forms of vortex breakdown observed in swirling jets.
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Figure 1: SimpLified model of a swirling jet flow. The centerline vortex of strength Fc is surrounded

by a nominally axisymmetric jet shear layer containing helical vortex lines of pitch ¢. The azimuthal

vorticity component is related to the top hat axial velocity profile, whereas the streamwise vorticity

component results in the centrifugally unstable stratification. Also shown are the streamwise and

azimuthal base flow velocity profiles.
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Figure 2: Comparison of the numerical growth rates of the radial perturbation amplitude obtained

from the vortex filament simulation (solid line) and the analytical growth rate (dotted line) for the

case of a purely swirling flow.
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Figure3: Theevolutionof a swirlingjet with/xUe//xUx = 8.2subjectto anaxisymmetricpertur-
bation. Shownis a sideviewof thevortexfilamentsat time t = 0.039 (a), along with isocontours

of the azimuthal vorticity distribution in a cross section containing the jet axis (b). For clarity,

two streamwise wavelengths are shown. Initially, the vortex lines are predominantly oriented in

the streamwise direction. At this early time, both graphs indicate that the azimuthal vorticity

component points in the same direction everywhere in the vortex sheet. This is a reflection of the

early stages of corotating ring formation due to the Kelvin-Helmholtz instability of the azimuthal

vorticity component.
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Figure 4: Time 0.801: Counterrotating rings form in the braid regions between the primary vortices,

as a result of a centrifugal instability related to the streamwise vorticity. The rings form as a result

of the reorientation of certain vortex filament segments into the opposite azimuthal direction near

x = 0 and x = 2_r, respectively.
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Figure 5: Time 1.225: The counterrotating rings increase in strength_ leading to the formation of

alternating regions in which fluid is convected towards or away from the jet axis, respectively.
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Figure 6: The sequence of bifurcations of the streamline pattern as seen in the reference frame

moving with half the nominal jet velocity. Islands form in the initial cats eyes pattern. Subsequently,

these islands grow in size, until they extend to the jet axis, where they create regions of upstream

velocity. In all frames, the dotted contour line has the same value as the jet centerline.
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Figure T: Sketch of the sequence of different streamline pattern topologies.
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Figure 8: Instantaneous growth rate of the circulation of the counterrotating vortex ring as a func-

tion of time. The dimensionless ratio/XUo/AU= has the following values: x:8.2, +:5.0, o:3.0, [::]:1.8.

Also plotted are the corresponding time-dependent values obtained from the scaring law (dashed

fines). For longer times, the agreement between the scaring law expressions and the numerical

values improves.
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Figure 9: Definitions of quantities used in the scaling arguments.
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Figure 10: Evolution of a swirling jet with AUe/AUx = 8.2 subject to an axisymmetric perturbation

of amplitude 5%, and an azimuthal disturbance of amplitude 0.04%. Shown are side views at times

0.977, 1.187, and 1.343, along with an end view for t = 1.343. The formation of the primary

and counterrotating rings proceeds similarly to the axisymmetric case displayed in Figures 3 to 5.

However, the azimuthal disturbance leads to the formation of additional concentrated streamwise

vortical structures in the narrow half of the braid region.
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Figure 11: Isosurface plot of the vorticity magnitude for the flow shown in Figure 10 at t = 1.343.

The dominant large scale coherent vortical structures have the form of primary and secondary

vortex rings, with additional streamwise vortices located in the narrow section of the braid region.
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Figure 12: Evolution of a swirling jet with AUe/AUx = 3 subject to an axisymmetric perturbation

of amplitude 5%, and an azimuthal disturbance of amplitude 1%. Shown are side views at times

2.402 and 3.154, along with a vorticity magnitude isosurface plot for this later time. For these

parameters, the streamwise vortical structures develop more rapidly, and they prevent the forma-

tion of the secondary counterrotating vortex rings. The isosurface plot shows the dominant large

scale structures to have the form of distorted vortex rings, connected by wavy streamwise vortical
structures.
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Figure 13: Evolution of a swirling jet with/kUo/AUx = 3 subject to an axisymmetric perturbation
of amplitude 5%, and an azimuthal disturbance of amplitude 5%. Shown are side views at times

1.543 and 3.105, along with an end view and a vorticity magnitude isosurface plot for this later time.

Here, the streamwise vortical structures develop even more rapidly, thereby suppressing even the

formation of strong primary vortex rings. Consequently, the isosurface plot shows wavy streamwise

vortices to dominate the large scale features of the flow.
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